您好,欢迎钱汇娱乐&首页官方网站!
联系我们:0512-55291586
关键词搜索:微型压力钱汇娱乐、TS108系列、TS109高精度压力变送器、通用型压力测量
当前位置:首页 >> 行业新闻 >> 影响钱汇娱乐精准度的因素有哪些?

影响钱汇娱乐精准度的因素有哪些?

作者: 来源: 日期:2018-9-20 10:57:32 人气:139

1.钱汇娱乐的动态性。

动特性是指钱汇娱乐对随时间变化的输入量的响应特性。动态特性输入信号变化时,输出信号随时间变化而相应地变化,这个过程称为响应。钱汇娱乐的动态特性是指钱汇娱乐对随时间变化的输入量的响应特性。动态特性好的钱汇娱乐,当输入信号是随时间变化的动态信号时,钱汇娱乐能及时精确地跟踪输入信号,按照输入信号的变化规律输出信号。当钱汇娱乐输入信号的变化缓慢时,是容易跟踪的,但随着输入信号的变化加快,钱汇娱乐的及时跟踪性能会逐渐下降。通常要求钱汇娱乐不仅能精确地显示被测量的大小,而且还能复现被测量随时间变化的规律,这也是钱汇娱乐的重要特性之一。

2.钱汇娱乐的线性度。

通常情况下,钱汇娱乐的实际静态特性输出是条曲线而非直线。在实际工作中,为使仪表具有均匀刻度的读数,常用一条拟合直线近似地代表实际的特性曲线、线性度(非线性误差)就是这个近似程度的一个性能指标。拟合直线的选取有多种方法。如将零输入和满量程输出点相连的理论直线作为拟合直线;或将与特性曲线上各点偏差的平方和为最小的理论直线作为拟合直线,此拟合直线称为最小二乘法拟合直线。

3.钱汇娱乐的灵敏度。

灵敏度是指钱汇娱乐在稳态工作情况下输出量变化△y对输入量变化△x的比值。它是输出一输入特性曲线的斜率。如果钱汇娱乐的输出和输入之间显线性关系,则灵敏度S是一个常数。否则,它将随输入量的变化而变化。灵敏度的量纲是输出、输入量的量纲之比。例如,某位移钱汇娱乐,在位移变化1mm时,输出电压变化为200mV,则其灵敏度应表示为200mV/mm.当钱汇娱乐的输出、输入量的量纲相同时,灵敏度可理解为放大倍数。

4.钱汇娱乐的稳定性。

稳定性表示钱汇娱乐在一个较长的时间内保持其性能参数的能力。理想的情况是不论什么时候,钱汇娱乐的特性参数都不随时间变化。但实际上,随着时间的推移,大多数钱汇娱乐的特性会发生改变。这是因为敏感器件或构成钱汇娱乐的部件,其特性会随时间发生变化,从而影响钱汇娱乐的稳定性。

5.钱汇娱乐的分辨力。

分辨力是指钱汇娱乐可能感受到的被测量的最小变化的能力。也就是说,如果输入量从某一非零值缓慢地变化。当输入变化值未超过某一数值时,钱汇娱乐的输出不会发生变化,即钱汇娱乐对此输入量的变化是分辨不出来的。只有当输入量的变化超过分辨力时,其输出才会发生变化。通常钱汇娱乐在满量程范围内各点的分辨力并不相同,因此常用满量程中能使输出量产生阶跃变化的输入量中的最大变化值作为衡量分辨力的指标。上述指标若用满量程的百分比表示,则称为分辨率。

6.钱汇娱乐的迟滞性。

迟滞特性表征钱汇娱乐在正向(输入量增大)和反向(输入量减小)行程间输出-输入特性曲线不一致的程度,通常用这两条曲线之间的最大差值△MAX与满量程输出F·S的百分比表示。迟滞可由钱汇娱乐内部元件存在能量的吸收造成。

7.钱汇娱乐的重复性。

重复性是指钱汇娱乐在输入量按同一方向作全量程连续多次变动时所得特性曲线不一致的程度。各条特性曲线越靠近,说明重复性越好,随机误差就越小。

1. the dynamic nature of the sensor.

Dynamic characteristics refer to the response characteristics of sensors to time dependent input. When the input signal of dynamic characteristics changes, the output signal changes with time, which is called response. The dynamic characteristics of sensors refer to the response characteristics of sensors to time varying input quantities. Sensor with good dynamic characteristics, when the input signal is a time-varying dynamic signal, the sensor can track the input signal in time and accurately, and output the signal according to the law of change of the input signal. When the input signal of the sensor changes slowly, it is easy to track, but as the input signal changes faster, the timely tracking performance of the sensor will gradually decline. Generally, the sensor is required not only to accurately display the size of the measured, but also to reproduce the law of the measured changes with time, which is one of the important characteristics of the sensor.

2. linearity of the sensor.

Usually, the output of the sensor's static characteristic is a bar curve instead of a straight line. In practice, in order to make the instrument have uniform calibration reading, a fitting line is often used to approximate the actual characteristic curve, linearity (nonlinear error) is a performance index of this approximation. There are many ways to select straight lines. If the theoretical line connected with zero input and full range output points is regarded as the fitting line, or the theoretical line with the least square deviation of each point on the characteristic curve is regarded as the fitting line, this fitting line is called the least square fitting line.

3. sensitivity of the sensor.

Sensitivity refers to the ratio of the output change (?) y) to the input change (?) x when the sensor works in steady state. It outputs the slope of an input characteristic curve. If there is a linear relationship between the output and input of the sensor, the sensitivity S is a constant. Otherwise, it will change with the change of input. The dimension of sensitivity is the ratio of output to the dimension of input. For example, when the displacement of a displacement sensor changes 1 mm, the output voltage changes 200 mV, the sensitivity should be expressed as 200 mV / mm. When the output and input dimensions of the sensor are the same, the sensitivity can be understood as an amplification factor.

4. the stability of the sensor.

Stability indicates the ability of a sensor to maintain its performance parameters over a long period of time. Ideally, the characteristic parameters of sensors will not change with time at any time. But in fact, as time goes on, the characteristics of most sensors will change. This is because the characteristics of sensitive devices or components that make up the sensor will change with time, thus affecting the stability of the sensor.

5. resolution of sensors.

Resolution is the ability of a sensor to feel the smallest change that has been measured. That is to say, if the input quantity changes slowly from a non zero value. When the input value does not exceed a certain value, the output of the sensor will not change, that is, the sensor can not distinguish the change of the input value. The output will change only when the amount of input exceeds resolution. Generally, the resolution of the sensor is not the same at all points within the full range, so the maximum variation of the input which can make the output step change is often used as an index to measure the resolution. If the above index is expressed in percentage of full scale, it is called resolution.

6. hysteresis of sensor.

Hysteresis characterizes the degree of inconsistency between the output-input characteristic curves of the sensor between the forward (input increases) and the reverse (input decreases), usually expressed by the percentage of the maximum difference between the two curves (?) MAX) and the full-range output F. S. Hysteresis can be caused by the absorption of energy in the sensor's internal components.

7. repeatability of sensors.

Repeatability refers to the degree of inconsistency of the characteristic curves obtained when the input of the sensor varies continuously in the same direction for many times over the whole range. The closer the characteristic curves are, the better the repeatability and the smaller the random error.

网站地图